
The Compleat CouchDB in 10¾ Pages

Peter Lavin

March 8, 2011

Table of Contents

What is CouchDB?
Exploring the UI
The REST API from the Command Line
Adding Data

Importing Data
Exporting Data From MySQL
Replicating

Remote Access
Replicating on a LAN
Replicating to an Online Database

Creating Views
Running CouchDB as a Service
Just How Compleat Have We Been?
Resources
About the Author

What is CouchDB?
Okay, perhaps the title is a slight exaggeration. But because of CouchDB's ease of use, 10¾ pages (the length
of this article in PDF format) gets you a long way. You'll learn how to create a database, bulk load data into
it, reconfigure the server for remote access, replicate to an online server, create a view and run the server as a
daemon. You'll learn how to do this not just from the web UI but also from the command line. That's pretty
compleat, especially in 10¾ pages.

But to answer the question posed by the title of this section: CouchDB is a NoSQL database, a project of the
Apache software foundation. It's easy to install and comes with its own administration client called "Futon".
You can interface with it from the command line through its REST API, by running the CouchDB application
or through your favourite browser. If you use the binaries provided by CouchOne you can easily install
CouchDB on Mac OS X, Ubuntu or Windows. This means you can quickly check it out without having to
mess around with failed dependencies or compiling from source.

This article deals with CouchDB on Mac OS X. However, apart from file paths and the section on running
CouchDB as a service, this article only requires an operating system that supports command line use of curl.
Using Futon is a quick way to become familiar with CouchDB and using curl commands to access the REST
API is a good, language-neutral way to get a feel for how you can access CouchDB from your preferred
programming language.

http://www.couchone.com/get

Exploring the UI
To download and installed CouchDB you just need to point your browser at the url, CouchOne. Download
and unzip the file and install the application as you would any other.

Start up CouchDB and you'll see something similar to the following:

Figure 1. The Futon UI

The application opens on the Overview page. From this page you can view all databases and navigate to a
specific database by clicking the database name.

On the right sidebar are links to other Futon pages. We'll mostly be concerned with the Overview,
Configuration and Replicator links.

Using Futon is an easy way to perform tasks such as:

 Creating a database – perform this task from the Overview page by clicking the Create Database link.

 Entering a record – Once you've created a database, click it and then choose the New Document
option.

 Viewing records – Clicking a database lists all its records. Clicking a record displays its details.

 Editing the configuration – Choose Configuration from the sidebar and view the configuration options

http://www.couchone.com/get

 Replicating a database – Choose Replicator from the sidebar and follow the instructions.

 Creating a view – Select a database from the Overview page and then Design Documents from the
View drop-down list box. You'll probably want to read on before making any changes here.

Futon is particularly good for some tasks and not quite so good for others—you may already have a sense for
which. What it's very good for is giving you a feel for CouchDB. Play with it.

The REST API from the Command Line
This section shows you how to use curl to interface with the REST API. It can serve as a quick reference for
basic syntax.

One of the first things you'll want to do is check that you can communicate with the server. You can do this
by sending a curl GET to localhost on the default port for CouchDB (the -X GET is optional):

shell> curl -X GET http://127.0.0.1:5984
{"couchdb":"Welcome","version":"1.0.2"}

The JSON response shown above indicates a successful connection to the server.

Note

In this article, all curl commands are followed by the output that is returned. In some cases
this output is formatted for easier reading.

Creating a database is as simple as the following PUT:

shell> curl -X PUT http://127.0.0.1:5984/test_db
{"ok":true}

Inspect your newly created database in the following way:

shell> curl http://127.0.0.1:5984/test_db
{"db_name":"test_db","doc_count":0,"doc_del_count":0,
"update_seq":0,"purge_seq":0,"compact_running":false,"disk_size":79,
"instance_start_time":"1298762620491062","disk_format_version":5,
"committed_update_seq":0}

Once you've created a database, you'll want to add a record. There are no tables within a CouchDB database
—it's not a relational database—so add a record directly to the database by issuing the following command:

shell> curl -X POST http://127.0.0.1:5984/test_db/ \
 -H 'Content-Type: application/json' \
 -d '{"name":"blue jay", "location":"Malton"}'
{"ok":true,"id":"e1595400fcee306e82219bb0d400068c",
 "rev":"1-3eab48829ff6a6882f8d049456fa9e21"}

By using POST you create a new document with a server-generated ID. Notice the Universal Unique
Identifier (UUID) in the message returned above. The id field of a record is similar to the autoincrement field
used by other databases. However, since there are no tables in a CouchDB database, it makes more sense to
use UUIDs rather than incremented integers.

You can use PUT to create a document when you do not want an autogenerated ID. Do this by appending the
desired ID to the database URI as shown below:

shell> curl -X PUT http://127.0.0.1:5984/test_db/fruit \
 -H 'Content-Type: application/json' \
 -d '{"name":"granny smith", "type":"sour"}'
{"ok":true,"id":"granny_smith","rev":"1-a9a02531ffa21cf0da0f9e49658ef642"}

Notice that the id is specified as part of the URI rather than being autogenerated.

Note

You can also create an id by including it in the JSON object as the value associated with the
special _id field.

To view all the records in a database, use the following syntax:

shell> curl -X GET http://127.0.0.1:5984/test_db/_all_docs
{"total_rows":2,"offset":0,"rows":[
{"id":"820510f01e98a2a20dcffdb8f0000052","key":"820510f01e98a2a20dcffdb8f0000052",
 "value":{"rev":"1-e49ecdd681345e490f1061ecd54d06dc"}},
{"id":"fruit","key":"fruit","value":{"rev":"1-c7410567a14b274b7b931674520082de"}}
]}

Look at the output of the id field and you can readily see the difference between an autogenerated id field
and one that has been specified.

Using the REST API test_db/_all_docs as shown above doesn't retrieve data in the manner of a
SELECT statement such as SELECT * FROM tblname;. To make a "wildcard" selection from a database
add the include_docs=true query parameter:

shell> curl -X GET http://127.0.0.1:5984/test_db/_all_docs?include_docs=true
{"total_rows":2,"offset":0,"rows":[
{"id":"820510f01e98a2a20dcffdb8f0000052","key":"820510f01e98a2a20dcffdb8f0000052",
"value":{"rev":"1-e49ecdd681345e490f1061ecd54d06dc"},
"doc":{"_id":"820510f01e98a2a20dcffdb8f0000052",
"_rev":"1-e49ecdd681345e490f1061ecd54d06dc",
"name":"blue jay","location":"Malton"}},
{"id":"fruit","key":"fruit",
"value":{"rev":"1-c7410567a14b274b7b931674520082de"},
"doc":{"_id":"fruit","_rev":"1-c7410567a14b274b7b931674520082de",
"name":"granny smith","type":"sour"}}
]}

Adding Data
It's easy to add single records to a database using Futon but that's not the ideal way to add records to a
database especially if you have existing data that you would like to bulk load. You can't bulk load data from
the web UI. You must use the REST API directly.

Importing Data

You can bulk load data using the bulk document API which simply requires that you append _bulk_docs

to the base database URI.

To test use of this method, create a file named mydata.json in the following format:

{
 "docs": [
 {"url":"example.com","user":"fred","password":"secret", "type":"personal"},
 {"url":"other.example.com","user":"admin","password":"super_secret",
 "type":"personal"}
]
}

Using the same test_db database, try bulk loading from the command line by issuing the following curl
command:

shell> curl -X POST http://127.0.0.1:5984/test_db/_bulk_docs \
 -H "Content-type: application/json" -d @mydata.json

When using curl with the -d option you must precede the data file name with the ’@‘ character.

The data file does not contain an _id field so UUIDs will be generated for the records in the
mydata.json file.

Exporting Data From MySQL
You may well want to export data from another database for bulk loading into CouchDB. This section
describes how to export data from MySQL—a quick way to get up and running.

You can export data from a MySQL database in JSON format using a SQL statement such as the following:

SELECT CONCAT("{\"field1_name\":\"",field1,"\",\"field2_name\":\"",field2, "\",
 \"field3\":\"",field3,"\",\"field4\":\"",field4,"\"},")
 FROM tablename
 INTO OUTFILE '/var/tmp/myout.json';

Note

If any of your data fields contain quotation marks they will need to be escaped.

Given a table with the column names, url, type, username and password the output will look
something like this:

{"url":"http://localhost","type":"personal","username":"peter","password":"secret"},
{"url":"http://example.com","type":"work","username":"root","password":"secret},
...

To load this data file as described in the section called “Importing Data”, you'll need to adjust the output file
and place its contents inside {"docs": [file_contents_here]}. As you've already seen, the bulk load
REST API call is as follows:

shell> curl -X POST http://127.0.0.1:5984/db_name/_bulk_docs \
 -H "Content-type: application/json" -d @myout.json

Remember that a unique ID will be created if you do not include one. If your existing database table contains
a unique ID that you would like to use in CouchDB, export data using the field name _id for that unique ID
field.

Note

You can nest a GROUP_CONCAT statement inside a CONCAT statement to create a complete
file that doesn't need to be adjusted manually but data will be truncated unless you change the
MySQL group_concat_max_len option from its default, 1024. However, this technique
only makes sense for small data sets.

Replicating
Easy replication is one of the attractive features of CouchDB and once you have some data in a database
you'll want to try replicating that data.

By default, CouchDB is configured for local access only so let's set up CouchDB for remote access because
replicating to or from a remote database is much more fun.

Remote Access

If you want to replicate to a server other than one running on your local machine, you'll have to change the
default CouchDB configuration. In the default configuration the bind_address option is set to
127.0.0.1. This setting limits REST requests to the local machine. If you change the bind_address
option to 0.0.0.0, then you'll be able to access CouchDB remotely.

You can easily modify this option through Futon. Click the Configuration tool on the right sidebar and
scroll down until you find the httpd section. Double click the value opposite bind_address and replace
it with 0.0.0.0. Once you've made this change you can access CouchDB using the IP address or hostname
of the machine hosting CouchDB. You can also still use 127.0.0.1 or localhost to access it locally.
Note: Restart CouchDB after making this change.

To change the configuration from the command line open
/Applications/CouchDBX.app/Contents/Resources/couchdbx-
core/couchdb_1.0.2/etc/couchdb/local.ini in your favourite text editor, locate the
[httpd] section and adjust the value of the bind_address option.

Note

Once you allow remote access it may be time to end the "Admin Party". With Futon open,
click the Fix this link on the lower right to add a username and password. You can also do this
by altering the local.ini file.

Replicating on a LAN

With remote access enabled you can now replicate a database across your LAN. You will, of course, need to

have CouchDB running on another machine on your network. Install CouchDB elsewhere on your network.
You can use the web UI to perform the replication. The following command shows how to do this from the
command line:

shell> curl -X POST http://127.0.0.1:5984/_replicate \
 -d '{"source":"test_db", "target":"http://192.168.0.196:5984/test_db"}' \
 -H "Content-type: application/json"
{"ok":true,"session_id":"c5fde0fc0905238800cc89f03f1c2fb8",
"source_last_seq":103,"history":[{"session_id":"c5fde0fc0905238800cc89f03f1c2fb8",
"start_time":"Sun, 27 Feb 2011 14:55:06 GMT","end_time":"Sun, 27 Feb 2011 14:55:06
GMT",
"start_last_seq":0,"end_last_seq":103,"recorded_seq":103,"missing_checked":0,
"missing_found":99,"docs_read":99,"docs_written":99,"doc_write_failures":0}]}

Add "continuous":true to the JSON object if you want the database to update continuously.

Note

Continuous updates work unless the server stops. You also might want to read up about push
versus pull replication (http://wiki.apache.org/couchdb/Replication).

Replicating to an Online Database

What's even more fun than replicating a database locally is replicating to an online database. You can do this
for no charge by signing up for CouchOne hosting at http://www.couchone.com/get. Do this by clicking the
Hosting via CouchOne link on the right sidebar.

From the command line you can replicate a local database to a CouchOne online database in the following
way:

shell> curl -X POST http://127.0.0.1:5984/_replicate \
 -d '{"source":"test_db",
"target":"http://admin:password@yourUI.couchone.com/test_db"}' \
 -H "Content-type: application/json"
 {"ok":true,"session_id":"21dcf771f6c780bec0223f4dd6feeb55","source_last_seq":1,
 "history":[{"session_id":"21dcf771f6c780bec0223f4dd6feeb55",
 "start_time":"Sun, 27 Feb 2011 21:14:01 GMT","end_time":"Sun, 27 Feb 2011 21:14:01
GMT",
 "start_last_seq":0,"end_last_seq":1,"recorded_seq":1,"missing_checked":0,"missing_fou
nd":1,
 "docs_read":1,"docs_written":1,"doc_write_failures":0}]}

Note

The preceding curl POST assumes that a database named birds already exists locally and
online. If the online database does not yet exist, you can create it during replication by adding
"create_target":true to the JSON object. Also, the online database requires that a
username and password be included as part of the URI. Replace
admin:password@yourUI with appropriate vales.

Use your browser to navigate to the CouchOne web interface for your online database and view the
replicated database. That was easy. No master, no slave. Just democratic, peer-to-peer replication.

http://www.couchone.com/get
http://wiki.apache.org/couchdb/Replication

Creating Views
If CouchDB is a NoSQL database with no tables, how do you look at your data? Views substitute for the
SELECT statements used in a Relational Database Management system (RDBMS). You can create temporary
or permanent views.

From the command line create a temporary view in the following way:

shell> curl -X POST http://127.0.0.1:5984/test_db/_temp_view \
 -d '{"map":"function(doc) { emit(null, doc);}"}' -H "Content-type:
application/json"
{"total_rows":2,"offset":0,"rows":[
{"id":"820510f01e98a2a20dcffdb8f0000052","key":null,
 "value":{"_id":"820510f01e98a2a20dcffdb8f0000052",
 "_rev":"1-e49ecdd681345e490f1061ecd54d06dc",
 "name":"blue jay","location":"Malton"}},
{"id":"fruit","key":null,
 "value":{"_id":"fruit",
 "_rev":"1-c7410567a14b274b7b931674520082de",
 "name":"granny smith","type":"sour"}},
]}

If your syntax is incorrect, as it can quite easily be with even simple views, you might see a message such as:

{"error":"bad_content_type","reason":"Content-Type must be application/json"}

If you see such a message, check quotation marks and open and closing braces.

Whereas bulk-loading is a task for the REST API, creating views is most easily done from the web UI. With
Futon open, select a database and choose Temporary view from the View list box. You should see
something like the following:

Figure 2. Designing a view

The View Code box shows a map function written in JavaScript that will be invoked against every record in
the database. The doc parameter passed in is a single document in the database and emit is a built-in
function that takes a key and a value argument. Consequently, this default map function outputs each
document in the current database. Add the line if(doc._id=="fruit") before emit(null, doc);
and, if you entered data as described in the section called “The REST API from the Command Line”, you
will see the record with the id field fruit when this view is run.

You can turn temporary views into permanent views by clicking the Save As button. You'll be asked to
provide a design document name and a view name. If you created a view for the test_db database with the
design document name id and the view name fruit, you can invoke it from the command line like so:

shell> curl -X GET http://127.0.0.1:5984/test_db/_design/id/_view/fruit?
limit=11&descending=true
[1] 3534
macbook:articles peterlavin$ {"total_rows":1,"offset":0,"rows":[
{"id":"fruit","key":null,"value":{"_id":"fruit",
 "_rev":"1-c7410567a14b274b7b931674520082de",
 "name":"granny smith","type":"sour"}}
]}

Running CouchDB as a Service
Once you've got things up and running and are familiar with CouchDB, you'll want to run it in the
background as a service. On Mac OS X this means using launchctl with a plist file. There is an existing plist
file called org.apache.couchdb.plist and it's found in the
/Applications/CouchDBX.app/Contents/Resources/couchdbx-
core/couchdb_1.0.2/Library/LaunchDaemons directory. Copy this file to your home directory
so that you can easily make changes to it. The org.apache.couchdb.plist file is reproduced below:

 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Label</key>
 <string>org.apache.couchdb</string>
 <key>EnvironmentVariables</key>
 <dict>
 <key>HOME</key>
 <string>~</string>
 <key>DYLD_LIBRARY_PATH</key>
 <string>/opt/local/lib:$DYLD_LIBRARY_PATH</string>
 </dict>
 <key>ProgramArguments</key>
 <array>
 <string>/Users/jan/usr/src/couchdbx-core/dist/couchdb_1.0.2/bin/couchdb</string>
 </array>
 <key>UserName</key>
 <string>couchdb</string>
 <key>StandardOutPath</key>
 <string>/dev/null</string>
 <key>StandardErrorPath</key>
 <string>/dev/null</string>
 <key>RunAtLoad</key>
 <true/>
 <key>KeepAlive</key>
 <true/>
 </dict>

</plist>

You can't use this file "as is". Make the following changes:

 The EnvironmentVariables key is not required so remove that key and its dictionary.

 Locate the couchdb startup script on your computer. It should be in the
/Applications/CouchDBX.app/Contents/Resources/couchdbx-
core/couchdb_1.0.2/bin directory. Change the string in the ProgramArguments key array
to this value and also change the UserName key string to your system username.

 One final change is required because the couchdb script expects to be run from the
/Applications/CouchDBX.app/Contents/Resources/couchdbx-core directory.
Add a WorkingDirectory key immediately followed by
<string>/Applications/CouchDBX.app/Contents/Resources/couchdbx-
core</string>.

The final result should look like the following, with your username replacing your_username.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Label</key>
 <string>org.apache.couchdb</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Applications/CouchDBX.app/Contents/Resources/couchdbx-
core/couchdb_1.0.2/bin/couchdb</string>
 </array>
 <key>UserName</key>
 <string>your_username</string>
 <key>StandardOutPath</key>
 <string>/dev/null</string>
 <key>StandardErrorPath</key>
 <string>/dev/null</string>
 <key>RunAtLoad</key>
 <true/>
 <key>WorkingDirectory</key>
 <string>/Applications/CouchDBX.app/Contents/Resources/couchdbx-core</string>
 <key>KeepAlive</key>
 <true/>
 </dict>
</plist>

Once you've made changes to the org.apache.couchdb.plist file, shut down the CouchDB
application if it is running, and copy the newly created plist file to the /Library/LaunchDaemons/
directory.

shell> sudo cp ~/org.apache.couchdb.plist \
 /Library/LaunchDaemons/org.apache.couchdb.plist

Start up the daemon in the following way:

shell> sudo launchctl load /Library/LaunchDaemons/org.apache.couchdb.plist

You can confirm that CouchDB is running by pointing your browser at
http://127.0.0.1:5984/_utils/index.html. You can do everything from a browser that you
can do when running the CouchDB application—except shut down the server. If you want to stop the server
use the command:

shell> sudo launchctl unload /Library/LaunchDaemons/org.apache.couchdb.plist

Note

If there are errors in your plist file, there will be no notification at the command line. If
CouchDB does not start up properly you can open the Console App and check the messages.
If you wish to relaunch CouchDB, you must first unload it as shown above.

Just How Compleat Have We Been?
A surprising number of topics can be covered in a minimal number of pages but lots more could be said,
especially about the following topics:

 Views

 CouchDB on Android

 How CouchDB handles revisions

Those topics will be covered in "The More Compleat Guide to CouchDB" coming sometime soon.

Resources
http://wiki.apache.org/couchdb/ – the CouchDB project website

http://www.couchone.com/get – the CouchOne website

http://guide.couchdb.org/ – "CouchDB: The Definitive Guide", a free online book from O'Reilly

http://www.ibm.com/developerworks/opensource/library/os-couchdb/index.html – "Exploring CouchDB", an
article at IBM developerWorks

About the Author
Peter Lavin has been published in a number of print and online magazines. He is also the author of Object
Oriented PHP, published by No Starch Press and a contributor to PHP Hacks by O'Reilly Media.

Being a full-time technical writer, Peter occasionally feels the need to depart from the restrained style typical
of his profession by writing articles with code snippets that use background colours other than grey.

http://oreilly.com/catalog/9780596101398
http://objectorientedphp.com/
http://objectorientedphp.com/
http://www.ibm.com/developerworks/opensource/library/os-couchdb/index.html
http://guide.couchdb.org/
http://www.couchone.com/get
http://wiki.apache.org/couchdb/

	The Compleat CouchDB in 10¾ Pages
	Peter Lavin

	What is CouchDB?
	Exploring the UI
	The REST API from the Command Line
	Note
	Note

	Adding Data
	Importing Data

	Exporting Data From MySQL
	Note
	Note

	Replicating
	Remote Access
	Note
	Replicating on a LAN
	Note
	Replicating to an Online Database
	Note

	Creating Views
	Running CouchDB as a Service
	Note

	Just How Compleat Have We Been?
	Resources
	About the Author

